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Dispersion Equation. Applications in 

Gel Permeation Chromatography 
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INTRODUCTION 

Tung’s axial dispersion equation wm recently solved analytically by 
Hamielec and Ray’ using the method of molecular weight averages (an 
appropriate name coined by Provder and Rosenz). This paper discusses 
applications of our method to a variety of problems in gel permeation 
chromatography (GPC). Included are recent applications developed by 
Provder and Rosen2 where a general instrumental spreading function was 
used to correct molecular weight averages. Other applications to be dis- 
cussed include the development of a criterion for the evaluation of 
column resolution and equations which may be used to interpret data ob- 
tained by GPC in recycle mode. 

THEORY AND APPLICATIONS 

General Axial Dispersion Equation after Tmg* 

We can consider the permeation process to cause a series of eluent volume 
delays, one for each molecular size. In this manner we can separate the 
permeation process, of which W(y), the corrected chromatogram, is a con- 
sequence, from the dispersion process and treat the latter separately. 

We now treat the input to that part of the GPC system which is respon- 
sible for axial dispersion as some arbitrary function, W(y). The impulse 
due to molecular species of characteristic volume y equals 

W W ( V  - Y)dY. 

W(y)G(v - Y)dY.  

The response of the GPC to this particular impulse will be equal to 

The total response a t  eluent volume v will be 

W )  = J-m W(y)G(v - YMY. (1) 

We are assuming here that the shape of the response for all species is of the 
same form and equal to G(v - y). Equation (1) is a general form of Tung’s 
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axial dispersion equation. 
general form4 

The expression G(v - y) might have the rather 

G(v - y) = d v  - y) exp { -MJ - d2) (2) 
where h, the resolution factor, equals 1/(2pz) where pz is the variance about 
the mean eluent volume y. 

For the special case of a Gaussian instrumental spreading function, 

4(v - y) = (y. 
Method of Molecular Weight Averages' 

Tung's general axial dispersion equation may be considered the convolu- 
tion integral of the bilateral LaPlace transformation, and hence 

P(s)  = B(s)W(s)  CJ) 
where 

P(s)  = F(v)  exp { -sv)dv,  

~ ( s )  = J m  ~ ( v )  exp -svjdv, 

S:m 

- m  

lV(s) = s-mm W(v) exp { -w]dv. 

The ratios of corrected to uncorrected molecular weight averages may be 
expressed as 

where K = 1, 2, 3,4 correspond to number, weight, 2, and Z + 1 average 
molecular weights, respectively. A similar expression may be written 

where a is the exponent in the Mark-Houwink intrinsic viscosity-molecular 
weight expression. 

Linear Molecular Weight Calibration Curve 

For calibration curves which are linear over the elution volume range of 
interest, 

~ ( v )  = D, exp f - D ~ V )  (6) 
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where D1, D,, >O. 
(3)  yields 

Substituting eq. (6) into (4)  and (5 )  and applying eq. 

Nonlinear Molecular Weight Calibration Curve 

If the nonlinear part of the calibration curve can be expressed as 

M"(v) = C(1,a)y + C(2,a)y2 + . * * (9) 

where y = exp { -D,v);  a = - 1 ,  a, 1 ,  2 ,  3 ,  " - ;  and C ( l , a ) ,  C ( ~ , ( Y ) ,  . - .  
and D ,  are constants, then the corrected molecular weight averages arid 
intrinsic viscosity may be expressed as 

1 
(10) 

M1(t) = [ 5 C(i ,  - l )P(iD-l)  G(iD-,) 
i = l  I 1  

N 

i = l  
where N is the number of terms in eq. (9), Do = 0 and 

Linear Calibration Curve and Gaussian Instrumental Spreading Function 

For the special case of a linear calibration curve and a Gaussian instru- 
mental spreading function, correction equations for the molecular weight 
averages and the intrinsic viscosity become 

P(s)  = W(s) exp {s2/4h) 

C(i,O) = 1. 

(14) 

where D,  is the slope of the molecular weight calibration curve (see eq. (6)). 
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Linear Calibration Curve and General Instrumental Spreading Function 

Provder and Rosen2 have proposed the use of a general statistical shape 
This function, which ac- function to describe instrumental spreading. 

counts for deviation from the Gaussian shape, hm the form 

where 4(v) = (h/r)”* exp (-hv2) and +“(v) denotes its nth-order deriva- 
tives. 

The coefficients A ,  are functions of p,, the nth-order moments about the 
mean eluent volume, 1.11, of the observed GPC chromatogram normalized. 
The coefficients are related to the moments as 

I43 A3 = ’/. 
P2 

and, as before, the variance is related to the resolution factor as p2 = l /zh.  
The coefficient Aa or p3  provides a measure of skewness. When Aa is 

positive, the chromatogram is skewed to higher elution volumes with a 
lowering of the number- and weight-average molecular weights. When A3 
is negative, the opposite is true. Similar behavior is found with the skew- 
ing factor, S K ,  in the equations of Balke and Hamie le~ .~  Finite values of 
A4 give a symmetrical distribution but provide a measure of deviation 
from t,he Gaussian shape. Provder and Rosen2 neglected coefficients Ag, 
A, ,  As,  - . .  and set Ae equal to  This gives a model with three 
parameters, h, p3,  and p4. These parameters can be determined using 
calibration standards. Provder and Rosen suggested the use of number- 
and weight-average molecular weights and intrinsic viscosity. Calibration 
procedures wi.th the general shape function will be discussed later. 

Provder and Rosen applied the method of molecular weight. averages us- 
ing the general shape function to obtain equations for corrected molec- 
ular weight averages and intrinsic viscosity. Unfortunately they made a 
small error in the development. Many of the equations presented in their 
paper are therefore incorrect. Only the corrected equations will be given 
in this paper.. These results follow: 

It follows therefore that 



SOLUTION TO TUNG’S AXIAL DISPERSION EQUATION 1523 

Using the truncated form where As = 0, A s  = A,  = 0, As = 0, . . . 
and introducing the moments, one obtains for number- and weight-average 
molecular weights and intrinsic viscosity the following equations : 

The use of calibration standards (not necessarily of small polydispersity) 
with known number- and weight-average molecular weights and intrinsic 
viscosjty and eqs. (23), (24), and (25) permits the evaluation of h, p3, and p4 
over the range of eluent volumes of interest,. Provder and Rosen2 have 
done this with polystyrene and poly(viny1 chloride) standards. They also 
set p4 = 0 and used the combinations Mn-M, and M,--[q] to determine h 
and p3. The moment p4 affects M ,  and M ,  in essentially the same manner 
as h. Therefore, setting p4 = 0 has the effect of lowering h but changing p3 
insignificantly. The information M,, M,, and [q ] for calibration standards 
therefore appears to be insufficient t o  establish whether p4 is significant or 
not. Corrected Mn, Mw,  and [q] appear to be equally good when p4 is set 
equal to zero. For a nonlinear molecular weight calibration curve sub- 
stitute equation (20) into equations (12) and (13). 

Finding the Differential Molecular Weight Distribution (DMWD) 

To find the corrected DMWD, one must establish the proper instru- 
mental spreading function, determine by calibration numerical values for 
the parameters of the spreading function, and then solve Tung’s axial dis- 
persion equation. 

The most difficult step is to establish the proper instrumental spreading 
function. To emphasize this difficulty, we will present an example using 
data provided by Provder and Rosen.2 Refer to their example 184-212 
where the following parameters were determined by matching M,, M,, and 
[q] for polystyrene calibration standards: (i) h = 0.796, p3 = 0.891, p4 = 
0 { Mn, Mw] ; (ii) h = 0.788, ~3 = 0.891, ~4 = 1.0 {Mnj Mw, [ T ]  ). 

The following corrections are obtained for (i) wherep4 = 0: 
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An impossible situation. 
inadequate. 

The instrumental spreading function is obviously 
The corrected chromatogram would have negative heights. 

And for the second set (ii) where p4 = 1.0 we obtain 

We will refer to these results in the discussions to follow. 

Gaussian Instrumental Spreading Function 

For the case cited, the corrections for the number- and weight-average 
molecular weights (corrections for deviation of instrumental spreading func- 
tion from Gaussian shape) are about 5%. One might therefore expect that 
the use of a Gaussian instrumental spreading function would permit one to 
find the corrected DMWD with little error. An examination of the correc- 
tions for the higher averages, however, suggests that this may in- 
deed not be the case. For this argument we are of course assuming that 
the general shape function is valid in this instance. The use of a Gaussian 
instrumental spreading function for the solution of Tung's axial dispersion 
equatioh would give a corrected DMWD with correct M ,  and M,, but with 
incorreot M ,  and higher molecular weight averages. But then how can we 
be sure that the general instrumental spreading function as used in this 
example is indeed the correct one? This point will now be discussed under 
the following heading. 
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Non-Gaussian Instrumental Spreading Function 

The recommended method2 of finding the appropriate instrumental 
spreading function is to use standards of known { M,, M,, [q]] , { M,, M,) , 
or { M,, [q]] to evaluate the h, pa, and p4 parameters in the function (in the 
latter two cases p4 is set equal to zero). This has already been done, see 
examples (i) and (ii). An examination of the corrections for deviations 
from the Gaussian shape indicates a great difference between the two in- 
strumental spreading functions (one found setting p4 = 0 and the other 
with p4 = 1.0). A negative correction for the former results in a negative 
value for M4(t) and indicates that the corrected DMWD would have some 
negative heights, see example (i). This situation is obviously not possible, 
ruling out the possibility that the associated instrumental spreading func- 
tion is a good one. However, it should be pointed out that the set of 
parameters h = 0.796, p3 = 0.891, p4 = 0, gives satisfactory corrections to 
M,, M,, and [q]. This information is therefore insufficient to assess the 
validity of the correction to M ,  and higher average molecular weights. 
The corrections to M ,  are very different, one being 1.9 and the other 1.4. 
Which of these is correct we do not know. Probably, on the basis of no 
negative heights in the corrected DMWD, the value 1.4 is closer to the 
truth. It is becoming clear that, to calibrate the GPC so that one obtains a 
corrected DMWD with many of its higher molecular weight averages ac- 
curate, one must use standards whose higher molecular weight averages 
are known. An alternative procedure would be to use truly monodispersed 
standards, measure the response, and calculate the moments directly. 
These unfortunately are not available at the present time. 

It seems that we have no ready means of establishing the validity of an 
instrumental spreading function. The best we can do at present is to 
calibrate for M,, M,, and [q]. 

A Criterion for Resolution in GPC : 
Gaussian Instrumental Spreading Function 

Referring to eq. (15), 

it is apparent that, to minimize the correction for imperfect resolution, one 
should choose a single column or column combination for which DZ2/4h is as 
small as possible. That is, the slope of the molecular weight calibration 
curve should be as small and the resolution factor as large as possible 
(variance of single species chromatogram as small as possible). Another 
interesting observation which may not have been obvious is the fact that 
greater reqolution power is necessary for the higher molecular weight aver- 
ages. For example, for a single value of DZ2/4h, the correction for imper- 
fect resolution is approximately the same for M ,  and M,, but increases 
rather rapidly for M ,  and higher averages. When discussing resolution, one 
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should therefore specify the average molecular weight in question. The 
fact that Dz, the slope of the calibration curve, and k, the resolution factor, 
in general vary with molecular weight is consistent with the observation 
that a column may give good separation at an intermediate molecular 
weight but may be entirely inadequate for higher molecular weights. At 
the high end and similarly at the low end of the molecular weight spectrum, 
Dz, the slope of the calibration curve, increases very rapidly resulting in 
poor resolution and a large correction. 

The greatest benefit of eq. (15) is its applicability to broad as well m 
narrow MWD standards of any shape. It permits the resolution power to 
be measured for the polymer in question with a once-through technique. 
The molecular weight calibration curve must of course be available. The 
polymer sample (not necessarily having a narrow DMWD) is injected to 
find either M,( m ) or M,( m ). Having knowledge of its true number- or 
weight-average molecular weight is sufficient to evaluate D22/4h with eq. 

Let us therefore define a specific resolution factor R,(K,M,J as follows: 
(15). 

where K = 1, 2,  3 ,  - - . and Mo is the molecular weight a t  the peak eluent 
volume. Column or column combination resolution may be considered 
perfect when B,(K,Mo) 5 100. The subscripts K ,  Mo are used to em- 
phasize the need to specify the particular molecular weight average and the 
molecular weight at the peak eluent volume. 

To show that eq. (26)  is consistent with present practice, we will show 
that under limiting conditions it is equivalent to a form after Bly.s Bly 
proposed the following expression : 

where V1 and Vz are eluent volumes of species 1 and 2 and WI and Wz are 
the associated peak widths (width of the baseline of the curve between two 
tangents drawn on the points of inflexion of the curve and extended to the 
baseline) and Mi and Mz are the associated molecular weights. 

Assuming the species are neighbors and the molecular weight calibration 
curve is linear in the vicinity W = Wl = Wz, then 

In Mi - In M 2  = Dz(Vz - V,) 

1 
DzW 

R,' = ~ 

For Gaussian distribution W = 4p2"' = (8/h)"*, 
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For K = 1 or 2, 

Hence, Bly’s expression is consistent with eqs. (15) and (26) in the limit of 
monodisperse standards. The use of Bly’s eq. (27) with polymer standards 
that are not truly monodisperse would of course introduce an error. This 
limitation does not exist with the use of eq. (15). If essentially monodis- 
perse standards were available, h could be measured directly with a once- 
through technique. A knowledge of M ,  and M ,  or M ,  and [7] would then 
permit one to calculate D2 as well with eq. (15). 

Non-Gaussian Instrumental Spreading Function 
The principal use of an expression for resolution such as eq. (26) is 

probably to evaluate gels , column geometry, and packing procedures. 
Skewing of single species chromatograms is largely due to column overload- 
ing (see Fig. 12, in Hamielec)’. A satisfactory column or column combi- 
nation may give highly skewed chromatograms when operated in an over- 
loaded manner. It is true that the resolution factor h and the slope of the 
molecular weight calibration curve , Dz, do depend somewhat on polymer 
loading but not nearly to the same extent as does skewing. The resolution 
factor also depends upon flow rate. The dependence of ~4 on gel, column 
geometry, packing procedure, and GPC operation is not understood at this 
time. 

For practical purposes it is recommended that eq. (26) be used to evalu- 
ate the resolution of a single column or column combination. The resolu- 
tion factor h should be evaluated using correction equations with p4 set 
equal to zero. 

GPC Operation in Recycle Mode 
There appears to be a great deal of interest developing in the possible use 

of recycle to obtain increased resolution with GPC. 
We will now formulate some equations which apply to both narrow and 

broad DMWD polymers being analyzed by GPC in recycle mode. We 
assume that the molecular weight calibration curve is linear and that the 
instrumental spreading function is Gaussian. As the path length of gel is 
increased , separation increases with a resultant reduction in polymer load- 
ing at any point in the column. Therefore, even though deviations from 
the Gaussian shape may be significant for one or two passes through the 
column or column combination, one would expect these deviations to be- 
come negligible with increasing number of passes. On this basis it is 
reasonable to assume a Gaussian spreading function. Errors that might 
be introduced for small number of passes will be discussed later. 

If D, is the slope of the molecular weight calibration curve for one pass 
(n = l), the slope after n passes will be Dz/n. The next question to answer 
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is, how does the resolution factor (or variance due to axial dispersion) vary 
with number of passes? For n = 1, 

1 1 1  - = - + -  
hi h ho 

where hl is the resolution factor after one recycle pass, ho is due to constant 
extra column spreading and is independent of n, and h is due to column 
spreading including the passage of the sample through the pump for one 
pass. 

I n 1  
Forn = n, - = - + -. 

h n  h ho 

Neglecting l/ho and rewriting eq. (15) for recycle mode, we obtain 

With increasing n, the correction for imperfect resolution decreases and in 
the limit of l/n = 0 becomes zero. 

Equation (15a) will now be used to develop an extrapolation technique 
which will permit one to obtain MK(t)  using a finite number of recycle 
passes. Taking logarithms, one obtains 

1 
n 

In M K ( a )  = - ( 3  - 2K)  (D22/4h) - + In M K ( t ) .  (15b) 

For each pass through the detector, a new response is measured and MK( 00 ) 
calculated. A plot of In M K ( w )  versus l/n should yield a straight line 
with intercept In MK(t) ,  the desired quantity. A similar equation may be 
written for the polydispersity : 

1 
n 

In P (  0 0 )  = (D22/2h) - + In P(t ) .  ( 154 

A similar extrapolation technique could be used to find the true polydis- 
For a small number of passes one might find deviations from 

These would probably be due to deviation from the 
persity, P(t). 
a straight line. 
Gaussian shape for the instrumental spreading function and to ho. 

SUMMARY 

Equations developed for correcting M,, M,, and [17] for imperfect resolu- 
tion are generally satisfactory. Choosing the appropriate instrumental 
spreading function is however a very di5cult task. There is need for 
further research on this problem, in particular with polymer standards for 
which the DMWD or even M, is known (in addition to M ,  and M,). 

A criterion for resolution in GPC which is based on a solution of Tung’s 
axial dispersion equation has been proposed. 
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The operation of GPC in recycle mode appears very promising. Equa- 
tions have been developed to interpret data obtained in this operational 
mode. It is probable that a great deal of work will be done in this area in 
the very near future. 
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